Posted on Leave a comment

The Pentagon’s Push to Program Soldiers’ Brains

The military wants future super-soldiers to control robots with their thoughts.

Eddie Guy
Source: The Atlantic
Shidonna Raven Garden and Cook

I. Who Could Object?

“Tonight I would like to share with you an idea that I am extremely passionate about,” the young man said. His long black hair was swept back like a rock star’s, or a gangster’s. “Think about this,” he continued. “Throughout all human history, the way that we have expressed our intent, the way we have expressed our goals, the way we have expressed our desires, has been limited by our bodies.” When he inhaled, his rib cage expanded and filled out the fabric of his shirt. Gesturing toward his body, he said, “We are born into this world with this. Whatever nature or luck has given us.”

His speech then took a turn: “Now, we’ve had a lot of interesting tools over the years, but fundamentally the way that we work with those tools is through our bodies.” Then a further turn: “Here’s a situation that I know all of you know very well—your frustration with your smartphones, right? This is another tool, right? And we are still communicating with these tools through our bodies.”

And then it made a leap: “I would claim to you that these tools are not so smart. And maybe one of the reasons why they’re not so smart is because they’re not connected to our brains. Maybe if we could hook those devices into our brains, they could have some idea of what our goals are, what our intent is, and what our frustration is.”

So began “Beyond Bionics,” a talk by Justin C. Sanchez, then an associate professor of biomedical engineering and neuroscience at the University of Miami, and a faculty member of the Miami Project to Cure Paralysis. He was speaking at a tedx conference in Florida in 2012. What lies beyond bionics? Sanchez described his work as trying to “understand the neural code,” which would involve putting “very fine microwire electrodes”—the diameter of a human hair—“into the brain.” When we do that, he said, we would be able to “listen in to the music of the brain” and “listen in to what somebody’s motor intent might be” and get a glimpse of “your goals and your rewards” and then “start to understand how the brain encodes behavior.”

He explained, “With all of this knowledge, what we’re trying to do is build new medical devices, new implantable chips for the body that can be encoded or programmed with all of these different aspects. Now, you may be wondering, what are we going to do with those chips? Well, the first recipients of these kinds of technologies will be the paralyzed. It would make me so happy by the end of my career if I could help get somebody out of their wheelchair.”

Sanchez went on, “The people that we are trying to help should never be imprisoned by their bodies. And today we can design technologies that can help liberate them from that. I’m truly inspired by that. It drives me every day when I wake up and get out of bed. Thank you so much.” He blew a kiss to the audience.The mission is to make human beings something other than what we are, with powers beyond the ones we’re born with.

A year later, Justin Sanchez went to work for the Defense Advanced Research Projects Agency, the Pentagon’s R&D department. At darpa, he now oversees all research on the healing and enhancement of the human mind and body. And his ambition involves more than helping get disabled people out of their wheelchair—much more.

darpa has dreamed for decades of merging human beings and machines. Some years ago, when the prospect of mind-controlled weapons became a public-relations liability for the agency, officials resorted to characteristic ingenuity. They recast the stated purpose of their neurotechnology research to focus ostensibly on the narrow goal of healing injury and curing illness. The work wasn’t about weaponry or warfare, agency officials claimed. It was about therapy and health care. Who could object? But even if this claim were true, such changes would have extensive ethical, social, and metaphysical implications. Within decades, neurotechnology could cause social disruption on a scale that would make smartphones and the internet look like gentle ripples on the pond of history.

Most unsettling, neurotechnology confounds age-old answers to this question: What is a human being?

II. High Risk, High Reward

In his 1958 State of the Union address, President Dwight Eisenhower declared that the United States of America “must be forward-looking in our research and development to anticipate the unimagined weapons of the future.” A few weeks later, his administration created the Advanced Research Projects Agency, a bureaucratically independent body that reported to the secretary of defense. This move had been prompted by the Soviet launch of the Sputnik satellite. The agency’s original remit was to hasten America’s entry into space.

During the next few years, arpa’s mission grew to encompass research into “man-computer symbiosis” and a classified program of experiments in mind control that was code-named Project Pandora. There were bizarre efforts that involved trying to move objects at a distance by means of thought alone. In 1972, with an increment of candor, the word Defense was added to the name, and the agency became darpa. Pursuing its mission, darpa funded researchers who helped invent technologies that changed the nature of battle (stealth aircraft, drones) and shaped daily life for billions (voice-recognition technology, GPS devices). Its best-known creation is the internet.

The agency’s penchant for what it calls “high-risk, high-reward” research ensured that it would also fund a cavalcade of folly. Project Seesaw, a quintessential Cold War boondoggle, envisioned a “particle-beam weapon” that could be deployed in the event of a Soviet attack. The idea was to set off a series of nuclear explosions beneath the Great Lakes, creating a giant underground chamber. Then the lakes would be drained, in a period of 15 minutes, to generate the electricity needed to set off a particle beam. The beam would accelerate through tunnels hundreds of miles long (also carved out by underground nuclear explosions) in order to muster enough force to shoot up into the atmosphere and knock incoming Soviet missiles out of the sky. During the Vietnam War, darpa tried to build a Cybernetic Anthropomorphous Machine, a jungle vehicle that officials called a “mechanical elephant.”One aspiration: the ability, via computer, to transfer knowledge and thoughts from one person’s mind to another’s.

The diverse and sometimes even opposing goals of darpa scientists and their Defense Department overlords merged into a murky, symbiotic research culture—“unencumbered by the typical bureaucratic oversight and uninhibited by the restraints of scientific peer review,” Sharon Weinberger wrote in a recent book, The Imagineers of War. In Weinberger’s account, darpa’s institutional history involves many episodes of introducing a new technology in the context of one appealing application, while hiding other genuine but more troubling motives. At darpa, the left hand knows, and doesn’t know, what the right hand is doing.

The agency is deceptively compact. A mere 220 employees, supported by about 1,000 contractors, report for work each day at darpa’s headquarters, a nondescript glass-and-steel building in Arlington, Virginia, across the street from the practice rink for the Washington Capitals. About 100 of these employees are program managers—scientists and engineers, part of whose job is to oversee about 2,000 outsourcing arrangements with corporations, universities, and government labs. The effective workforce of darpa actually runs into the range of tens of thousands. The budget is officially said to be about $3 billion, and has stood at roughly that level for an implausibly long time—the past 14 years.

The Biological Technologies Office, created in 2014, is the newest of darpa’s six main divisions. This is the office headed by Justin Sanchez. One purpose of the office is to “restore and maintain warfighter abilities” by various means, including many that emphasize neurotechnology—applying engineering principles to the biology of the nervous system. For instance, the Restoring Active Memory program develops neuroprosthetics—tiny electronic components implanted in brain tissue—that aim to alter memory formation so as to counteract traumatic brain injury. Does darpa also run secret biological programs? In the past, the Department of Defense has done such things. It has conducted tests on human subjects that were questionable, unethical, or, many have argued, illegal. The Big Boy protocol, for example, compared radiation exposure of sailors who worked above and below deck on a battleship, never informing the sailors that they were part of an experiment.

Last year I asked Sanchez directly whether any of darpa’s neurotechnology work, specifically, was classified. He broke eye contact and said, “I can’t—We’ll have to get off that topic, because I can’t answer one way or another.” When I framed the question personally—“Are you involved with any classified neuroscience project?”—he looked me in the eye and said, “I’m not doing any classified work on the neurotechnology end.”

If his speech is careful, it is not spare. Sanchez has appeared at public events with some frequency (videos are posted on darpa’s YouTube channel), to articulate joyful streams of good news about darpa’s proven applications—for instance, brain-controlled prosthetic arms for soldiers who have lost limbs. Occasionally he also mentions some of his more distant aspirations. One of them is the ability, via computer, to transfer knowledge and thoughts from one person’s mind to another’s.

III. “We Try to Find Ways to Say Yes”

Medicine and biology were of minor interest to darpa until the 1990s, when biological weapons became a threat to U.S. national security. The agency made a significant investment in biology in 1997, when darpa created the Controlled Biological Systems program. The zoologist Alan S. Rudolph managed this sprawling effort to integrate the built world with the natural world. As he explained it to me, the aim was “to increase, if you will, the baud rate, or the cross-communication, between living and nonliving systems.” He spent his days working through questions such as “Could we unlock the signals in the brain associated with movement in order to allow you to control something outside your body, like a prosthetic leg or an arm, a robot, a smart home—or to send the signal to somebody else and have them receive it?”

Human enhancement became an agency priority. “Soldiers having no physical, physiological, or cognitive limitation will be key to survival and operational dominance in the future,” predicted Michael Goldblatt, who had been the science and technology officer at McDonald’s before joining darpa in 1999. To enlarge humanity’s capacity to “control evolution,” he assembled a portfolio of programs with names that sounded like they’d been taken from video games or sci-fi movies: Metabolic Dominance, Persistence in Combat, Continuous Assisted Performance, Augmented Cognition, Peak Soldier Performance, Brain-Machine Interface.

The programs of this era, as described by Annie Jacobsen in her 2015 book, The Pentagon’s Brain, often shaded into mad-scientist territory. The Continuous Assisted Performance project attempted to create a “24/7 soldier” who could go without sleep for up to a week. (“My measure of success,” one darpa official said of these programs, “is that the International Olympic Committee bans everything we do.”)

Dick Cheney relished this kind of research. In the summer of 2001, an array of “super-soldier” programs was presented to the vice president. His enthusiasm contributed to the latitude that President George W. Bush’s administration gave darpa—at a time when the agency’s foundation was shifting. Academic science gave way to tech-industry “innovation.” Tony Tether, who had spent his career working alternately for Big Tech, defense contractors, and the Pentagon, became darpa’s director. After the 9/11 attacks, the agency announced plans for a surveillance program called Total Information Awareness, whose logo included an all-seeing eye emitting rays of light that scanned the globe. The pushback was intense, and Congress took darpa to task for Orwellian overreach. The head of the program—Admiral John Poindexter, who had been tainted by scandal back in the Reagan years—later resigned, in 2003. The controversy also drew unwanted attention to darpa’s research on super-soldiers and the melding of mind and machine. That research made people nervous, and Alan Rudolph, too, found himself on the way out.

In this time of crisis, darpa invited Geoff Ling, a neurology‑ICU physician and, at the time, an active-duty Army officer, to join the Defense Sciences Office. (Ling went on to work in the Biological Technologies Office when it spun out from Defense Sciences, in 2014.) When Ling was interviewed for his first job at darpa, in 2002, he was preparing for deployment to Afghanistan and thinking about very specific combat needs. One was a “pharmacy on demand” that would eliminate the bulk of powdery fillers from drugs in pill or capsule form and instead would formulate active ingredients for ingestion via a lighter, more compact, dissolving substance—like Listerine breath strips. This eventually became a darpa program. The agency’s brazen sense of possibility buoyed Ling, who recalls with pleasure how colleagues told him, “We try to find ways to say yes, not ways to say no.” With Rudolph gone, Ling picked up the torch.

Ling talks fast. He has a tough-guy voice. The faster he talks, the tougher he sounds, and when I met him, his voice hit top speed as he described a first principle of Defense Sciences. He said he had learned this “particularly” from Alan Rudolph: “Your brain tells your hands what to do. Your hands basically are its tools, okay? And that was a revelation to me.” He continued, “We are tool users—that’s what humans are. A human wants to fly, he builds an airplane and flies. A human wants to have recorded history, and he creates a pen. Everything we do is because we use tools, right? And the ultimate tools are our hands and feet. Our hands allow us to work with the environment to do stuff, and our feet take us where our brain wants to go. The brain is the most important thing.”

Ling connected this idea of the brain’s primacy with his own clinical experience of the battlefield. He asked himself, “How can I liberate mankind from the limitations of the body?” The program for which Ling became best known is called Revolutionizing Prosthetics. Since the Civil War, as Ling has said, the prosthetic arm given to most amputees has been barely more sophisticated than “a hook,” and not without risks: “Try taking care of your morning ablutions with that bad boy, and you’re going to need a proctologist every goddamn day.” With help from darpa colleagues and academic and corporate researchers, Ling and his team built something that was once all but unimaginable: a brain-controlled prosthetic arm.

No invention since the internet has been such a reliable source of good publicity for darpa. Milestones in its development were hailed with wonder. In 2012, 60 Minutes showed a paralyzed woman named Jan Scheuermann feeding herself a bar of chocolate using a robotic arm that she manipulated by means of a brain implant.

Yet darpa’s work to repair damaged bodies was merely a marker on a road to somewhere else. The agency has always had a larger mission, and in a 2015 presentation, one program manager—a Silicon Valley recruit—described that mission: to “free the mind from the limitations of even healthy bodies.” What the agency learns from healing makes way for enhancement. The mission is to make human beings something other than what we are, with powers beyond the ones we’re born with and beyond the ones we can organically attain.

The internal workings of darpa are complicated. The goals and values of its research shift and evolve in the manner of a strange, half-conscious shell game. The line between healing and enhancement blurs. And no one should lose sight of the fact that D is the first letter in darpa’s name. A year and a half after the video of Jan Scheuermann feeding herself chocolate was shown on television, darpa made another video of her, in which her brain-computer interface was connected to an F-35 flight simulator, and she was flying the airplane. darpa later disclosed this at a conference called Future of War.

Geoff Ling’s efforts have been carried on by Justin Sanchez. In 2016, Sanchez appeared at darpa’s “Demo Day” with a man named Johnny Matheny, whom agency officials describe as the first “osseointegrated” upper-limb amputee—the first man with a prosthetic arm attached directly to bone. Matheny demonstrated what was, at the time, darpa’s most advanced prosthetic arm. He told the attendees, “I can sit here and curl a 45-pound dumbbell all day long, till the battery runs dead.” The next day, Gizmodo ran this headline above its report from the event: “darpa’s Mind-Controlled Arm Will Make You Wish You Were a Cyborg.”

Since then, darpa’s work in neurotechnology has avowedly widened in scope, to embrace “the broader aspects of life,” Sanchez told me, “beyond the person in the hospital who is using it to heal.” The logical progression of all this research is the creation of human beings who are ever more perfect, by certain technological standards. New and improved soldiers are necessary and desirable for darpa, but they are just the window-display version of the life that lies ahead.

IV. “Over the Horizon”

Consider memory, Sanchez told me: “Everybody thinks about what it would be like to give memory a boost by 20, 30, 40 percent—pick your favorite number—and how that would be transformative.” He spoke of memory enhancement through neural interface as an alternative form of education. “School in its most fundamental form is a technology that we have developed as a society to help our brains to do more,” he said. “In a different way, neurotechnology uses other tools and techniques to help our brains be the best that they can be.” One technique was described in a 2013 paper, a study involving researchers at Wake Forest University, the University of Southern California, and the University of Kentucky. Researchers performed surgery on 11 rats. Into each rat’s brain, an electronic array—featuring 16 stainless-steel wires—was implanted. After the rats recovered from surgery, they were separated into two groups, and they spent a period of weeks getting educated, though one group was educated more than the other.

The less educated group learned a simple task, involving how to procure a droplet of water. The more educated group learned a complex version of that same task—to procure the water, these rats had to persistently poke levers with their nose despite confounding delays in the delivery of the water droplet. When the more educated group of rats attained mastery of this task, the researchers exported the neural-firing patterns recorded in the rats’ brains—the memory of how to perform the complex task—to a computer.

“What we did then was we took those signals and we gave it to an animal that was stupid,” Geoff Ling said at a darpa event in 2015—meaning that researchers took the neural-firing patterns encoding the memory of how to perform the more complex task, recorded from the brains of the more educated rats, and transferred those patterns into the brains of the less educated rats—“and that stupid animal got it. They were able to execute that full thing.” Ling summarized: “For this rat, we reduced the learning period from eight weeks down to seconds.”

“They could inject memory using the precise neural codes for certain skills,” Sanchez told me. He believes that the Wake Forest experiment amounts to a foundational step toward “memory prosthesis.” This is the stuff of The Matrix. Though many researchers question the findings—cautioning that, really, it can’t be this simple—Sanchez is confident: “If I know the neural codes in one individual, could I give that neural code to another person? I think you could.” Under Sanchez, darpa has funded human experiments at Wake Forest, the University of Southern California, and the University of Pennsylvania, using similar mechanisms in analogous parts of the brain. These experiments did not transfer memory from one person to another, but instead gave individuals a memory “boost.” Implanted electrodes recorded neuronal activity associated with recognizing patterns (at Wake Forest and USC) and memorizing word lists (at Penn) in certain brain circuits. Then electrodes fed back those recordings of neuronal activity into the same circuits as a form of reinforcement. The result, in both cases, was significantly improved memory recall.

Doug Weber, a neural engineer at the University of Pittsburgh who recently finished a four-year term as a darpa program manager, working with Sanchez, is a memory-transfer skeptic. Born in Wisconsin, he has the demeanor of a sitcom dad: not too polished, not too rumpled. “I don’t believe in the infinite limits of technology evolution,” he told me. “I do believe there are going to be some technical challenges which are impossible to achieve.” For instance, when scientists put electrodes in the brain, those devices eventually fail—after a few months or a few years. The most intractable problem is blood leakage. When foreign material is put into the brain, Weber said, “you undergo this process of wounding, bleeding, healing, wounding, bleeding, healing, and whenever blood leaks into the brain compartment, the activity in the cells goes way down, so they become sick, essentially.” More effectively than any fortress, the brain rejects invasion.

Even if the interface problems that limit us now didn’t exist, Weber went on to say, he still would not believe that neuroscientists could enable the memory-prosthesis scenario. Some people like to think about the brain as if it were a computer, Weber explained, “where information goes from A to B to C, like everything is very modular. And certainly there is clear modular organization in the brain. But it’s not nearly as sharp as it is in a computer. All information is everywhere all the time, right? It’s so widely distributed that achieving that level of integration with the brain is far out of reach right now.”

Peripheral nerves, by contrast, conduct signals in a more modular fashion. The biggest, longest peripheral nerve is the vagus. It connects the brain with the heart, the lungs, the digestive tract, and more. Neuroscientists understand the brain’s relationship with the vagus nerve more clearly than they understand the intricacies of memory formation and recall among neurons within the brain. Weber believes that it may be possible to stimulate the vagus nerve in ways that enhance the process of learning—not by transferring experiential memories, but by sharpening the facility for certain skills.Will an enhanced human being—a human being possessing a neural interface with a computer—still be a human being?

To test this hypothesis, Weber directed the creation of a new program in the Biological Technologies Office, called Targeted Neuroplasticity Training (TNT). Teams of researchers at seven universities are investigating whether vagal-nerve stimulation can enhance learning in three areas: marksmanship, surveillance and reconnaissance, and language. The team at Arizona State has an ethicist on staff whose job, according to Weber, “is to be looking over the horizon to anticipate potential challenges and conflicts that may arise” regarding the ethical dimensions of the program’s technology, “before we let the genie out of the bottle.” At a TNT kickoff meeting, the research teams spent 90 minutes discussing the ethical questions involved in their work—the start of a fraught conversation that will broaden to include many others, and last for a very long time.

darpa officials refer to the potential consequences of neurotechnology by invoking the acronym elsi, a term of art devised for the Human Genome Project. It stands for “ethical, legal, social implications.” The man who led the discussion on ethics among the research teams was Steven Hyman, a neuroscientist and neuroethicist at MIT and Harvard’s Broad Institute. Hyman is also a former head of the National Institute of Mental Health. When I spoke with him about his work on darpa programs, he noted that one issue needing attention is “cross talk.” A man-machine interface that does not just “read” someone’s brain but also “writes into” someone’s brain would almost certainly create “cross talk between those circuits which we are targeting and the circuits which are engaged in what we might call social and moral emotions,” he said. It is impossible to predict the effects of such cross talk on “the conduct of war” (the example he gave), much less, of course, on ordinary life.

Weber and a darpa spokesperson related some of the questions the researchers asked in their ethics discussion: Who will decide how this technology gets used? Would a superior be able to force subordinates to use it? Will genetic tests be able to determine how responsive someone would be to targeted neuroplasticity training? Would such tests be voluntary or mandatory? Could the results of such tests lead to discrimination in school admissions or employment? What if the technology affects moral or emotional cognition—our ability to tell right from wrong or to control our own behavior?

Recalling the ethics discussion, Weber told me, “The main thing I remember is that we ran out of time.”

V. “You Can Weaponize Anything”

In The Pentagon’s Brain, Annie Jacobsen suggested that darpa’s neurotechnology research, including upper-limb prosthetics and the brain-machine interface, is not what it seems: “It is likely that darpa’s primary goal in advancing prosthetics is to give robots, not men, better arms and hands.” Geoff Ling rejected the gist of her conclusion when I summarized it for him (he hadn’t read the book). He told me, “When we talk about stuff like this, and people are looking for nefarious things, I always say to them, ‘Do you honestly believe that the military that your grandfather served in, your uncle served in, has changed into being Nazis or the Russian army?’ Everything we did in the Revolutionizing Prosthetics program—everything we did—is published. If we were really building an autonomous-weapons system, why would we publish it in the open literature for our adversaries to read? We hid nothing. We hid not a thing. And you know what? That meant that we didn’t just do it for America. We did it for the world.”

I started to say that publishing this research would not prevent its being misused. But the terms use and misuse overlook a bigger issue at the core of any meaningful neurotechnology-ethics discussion. Will an enhanced human being—a human being possessing a neural interface with a computer—still be human, as people have experienced humanity through all of time? Or will such a person be a different sort of creature?

The U.S. government has put limits on darpa’s power to experiment with enhancing human capabilities. Ling says colleagues told him of a “directive”: “Congress was very specific,” he said. “They don’t want us to build a superperson.” This can’t be the announced goal, Congress seems to be saying, but if we get there by accident—well, that’s another story. Ling’s imagination remains at large. He told me, “If I gave you a third eye, and the eye can see in the ultraviolet, that would be incorporated into everything that you do. If I gave you a third ear that could hear at a very high frequency, like a bat or like a snake, then you would incorporate all those senses into your experience and you would use that to your advantage. If you can see at night, you’re better than the person who can’t see at night.”

Enhancing the senses to gain superior advantage—this language suggests weaponry. Such capacities could certainly have military applications, Ling acknowledged—“You can weaponize anything, right?”—before he dismissed the idea and returned to the party line: “No, actually, this has to do with increasing a human’s capability” in a way that he compared to military training and civilian education, and justified in economic terms.

“Let’s say I gave you a third arm,” and then a fourth arm—so, two additional hands, he said. “You would be more capable; you would do more things, right?” And if you could control four hands as seamlessly as you’re controlling your current two hands, he continued, “you would actually be doing double the amount of work that you would normally do. It’s as simple as that. You’re increasing your productivity to do whatever you want to do.” I started to picture his vision—working with four arms, four hands—and asked, “Where does it end?”

“It won’t ever end,” Ling said. “I mean, it will constantly get better and better—” His cellphone rang. He took the call, then resumed where he had left off: “What darpa does is we provide a fundamental tool so that other people can take those tools and do great things with them that we’re not even thinking about.”

Judging by what he said next, however, the number of things that darpa is thinking about far exceeds what it typically talks about in public. “If a brain can control a robot that looks like a hand,” Ling said, “why can’t it control a robot that looks like a snake? Why can’t that brain control a robot that looks like a big mass of Jell-O, able to get around corners and up and down and through things? I mean, somebody will find an application for that. They couldn’t do it now, because they can’t become that glob, right? But in my world, with their brain now having a direct interface with that glob, that glob is the embodiment of them. So now they’re basically the glob, and they can go do everything a glob can do.”

VI. Gold Rush

darpa’s developing capabilities still hover at or near a proof-of-concept stage. But that’s close enough to have drawn investment from some of the world’s richest corporations. In 1990, during the administration of President George H. W. Bush, darpa Director Craig I. Fields lost his job because, according to contemporary news accounts, he intentionally fostered business development with some Silicon Valley companies, and White House officials deemed that inappropriate. Since the administration of the second President Bush, however, such sensitivities have faded.

Over time, darpa has become something of a farm team for Silicon Valley. Regina Dugan, who was appointed darpa director by President Barack Obama, went on to head Google’s Advanced Technology and Projects group, and other former darpa officials went to work for her there. She then led R&D for the analogous group at Facebook, called Building 8. (She has since left Facebook.)

darpa’s neurotechnology research has been affected in recent years by corporate poaching. Doug Weber told me that some darpa researchers have been “scooped up” by companies including Verily, the life-sciences division of Alphabet (the parent company of Google), which, in partnership with the British pharmaceutical conglomerate GlaxoSmithKline, created a company called Galvani Bioelectronics, to bring neuro-modulation devices to market. Galvani calls its business “bioelectric medicine,” which conveys an aura of warmth and trustworthiness. Ted Berger, a University of Southern California biomedical engineer who collaborated with the Wake Forest researchers on their studies of memory transfer in rats, worked as the chief science officer at the neurotechnology company Kernel, which plans to build “advanced neural interfaces to treat disease and dysfunction, illuminate the mechanisms of intelligence, and extend cognition.” Elon Musk has courted darpa researchers to join his company Neuralink, which is said to be developing an interface known as “neural lace.” Facebook’s Building 8 is working on a neural interface too. In 2017, Regina Dugan said that 60 engineers were at work on a system with the goal of allowing users to type 100 words a minute “directly from your brain.” Geoff Ling is on Building 8’s advisory board.

Talking with Justin Sanchez, I speculated that if he realizes his ambitions, he could change daily life in even more fundamental and lasting ways than Facebook’s Mark Zuckerberg and Twitter’s Jack Dorsey have. Sanchez blushes easily, and he breaks eye contact when he is uncomfortable, but he did not look away when he heard his name mentioned in such company. Remembering a remark that he had once made about his hope for neurotechnology’s wide adoption, but with “appropriate checks to make sure that it’s done in the right way,” I asked him to talk about what the right way might look like. Did any member of Congress strike him as having good ideas about legal or regulatory structures that might shape an emerging neural-interface industry? He demurred (“darpa’s mission isn’t to define or even direct those things”) and suggested that, in reality, market forces would do more to shape the evolution of neurotechnology than laws or regulations or deliberate policy choices. What will happen, he said, is that scientists at universities will sell their discoveries or create start-ups. The marketplace will take it from there: “As they develop their companies, and as they develop their products, they’re going to be subject to convincing people that whatever they’re developing makes sense, that it helps people to be a better version of themselves. And that process—that day-to-day development—will ultimately guide where these technologies go. I mean, I think that’s the frank reality of how it ultimately will unfold.”

He seemed entirely untroubled by what may be the most troubling aspect of darpa’s work: not that it discovers what it discovers, but that the world has, so far, always been ready to buy it.


This article appears in the November 2018 print edition with the headline “The Pentagon Wants to Weaponize the Brain. What Could Go Wrong?”MICHAEL JOSEPH GROSS, a contributing editor at Vanity Fair, is writing a book about strength.

As we have seen in the past, inventions are often sold to the public at large as very altruistic. But to echo the statements in this article, these biotechnology and neuroscience inventions look altruistic on the surface but are on their way to somewhere else they do not care to disclose to the public. Where do you think this technology is going? Would you want your son or daughter to enlist in the service? Why or why not?

Share your comments with the community by posting them below. Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing!

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

Chip Implants: The Next Big Privacy Debate

Some say we will all, eventually, be chipped. Others say — never! Let the privacy, legal, technical, professional, medical, security, political, religious and ‘oh so personal’ battles begin.
BY DAN LOHRMANN / NOVEMBER 25, 2018
Source: Government Technology

Credit: Shutterstock – Shidonna Raven Garden and Cook

Have you been chipped?

That question is set to divide millions of people in the 2020s. And perhaps billions of people in the 2030s and 2040s.

Just as the world begins to understand the many benefits of the Internet of Things (IoT), but also learns about the ‘dark side’ from ‘smart everything,’ including our connected cities, we are now on the cusp of small chips causing major new privacy disagreements.

As individuals try to grapple with the privacy and security implications that come with IoT, big data, public- and private-sector data breaches, social media sharing, GDPR, a new California privacy law, along with data ownership and “right to be forgotten” provisions, along comes a set of technologies that will become much more personal than your smartphone or cloud storage history.

Get ready for people to ask you to place microchips under your skin for a wide variety of reasons.

Why are implanted chips so controversial? What is at stake? How can such a small thing affect so many people? What leads me to proclaim that implanted chips will become the next big privacy debate?

Short answer: Implanting chips in humans has privacy and security implications that go well beyond cameras in public places, facial recognition, tracking of our locations, our driving habits, our spending histories, and even beyond ownership of your data.  

This topic touches upon your hand, your heart, your brain and the rest of your body —literally. This new development is set to give a very different meaning to ‘hacking the body’ or biohacking. While cyber experts continue to worry about protecting critical infrastructure and mitigating security risks that could harm the economy or cause a loss of life, implanted chips also affect health but add in new dimensions that conflict with people’s religious beliefs.  

Let’s explore the good, the bad and the possible ugly implications that come with microchip implants.

Background on Implanting Microchips in Your Body

First, as background, we initially explored this implanted chips topic last year in this piece about employees at Three Square Market, a technology company in Wisconsin, who had a small chip injected in their hands for security convenience. Reactions to this news was all over the map, with headlines ranging from positive stories about the dawning of a great new era to big brother privacy concerns to fears that biblical prophecies are about to come true.

Many more articles have been written on this topic since my first article in July 2017. USA Today came out in August of 2017 with the headline: You will get chipped — eventually. Here’s a quote: “This would go beyond paying with your smartphone. Instead, chipped customers would simply wave their hands in lieu of Apple Pay and other mobile-payment systems.

The benefits don’t stop there. In the future, consumers could zip through airport scanners sans passport or driver’s license; open doors; start cars; and operate home automation systems. All of it, if the technology pans out, with the simple wave of a hand. …”

The Atlantic offered an article in September 2018 describing why you’re probably getting a microchip implant someday. The article focused on how microchip implants are going from tech-geek novelty to genuine health tool — and you might be running out of good reasons to say no.

“Three Square Chip says that its medical RFID implants will be powered by body heat, and McMullan’s plans to develop a single piece of hardware to aid patients with a wider range of conditions could make the chips more affordable than devices with more specialized (and limited) functions. “Many heart patients, right now, the only time they know they’ve got a problem is when they’re in the back of an ambulance,” McMullan says.

The company estimates that it will be selling chips capable of tracking a wearer’s live vital signs in a little more than a year, but a few other developments will come first. McMullan hopes that people will soon consider storing their medical information on encrypted RFID chips, and the group is also working on a way to make GPS-enabled chips available as an option for families to track relatives suffering from severe dementia—another use for the chips that poses both obvious benefits and legitimate concerns. …”

Second, the topic resurfaced last month with several stories, like this NPR article on how thousands of Swedes are inserting microchips under their skin. “More than 4,000 Swedes have adopted the technology, with one company, Biohax International, dominating the market. The chipping firm was started five years ago by Jowan Osterlund, a former professional body piercer.

After spending the past two years working full time on the project, he is currently developing training materials so he can hire Swedish doctors and nurses to help take on some of his heavy workload. …”

Third, the topic became heated — again — after this recent article in the The Guardian (UK) went viral, titled: Alarm over talks to implant UK employees with microchips. The article described how the Trade Union Congress is concerned over tech being used to control and micromanage people.

For a brief time this month, implanting chips into your body became the No. 1 topic of discussion on LinkedIn globally. An article that I posted received more than 30K views and well over a hundred comments — mostly appalled by the practice of implanting chips — at least for convenience. 

Fourth, there have been numerous articles over the past year describing medical advances, potentially even cures for various diseases, which may come by implanting microchips in humans in various ways. Here are three examples:

Implants Offered as an Optional Improvement?

But medical necessities aside, would you pay to receive a chip implant if it offered some other optional medical enhancement for your body? Other research, which started as deep-brain stimulation as a treatment for Parkinson’s disease, now suggests that chip implants can boost your memory

Or, what if a chip implant offered the convenience of embedding a smartphone in your body? This Allure.com article suggests how.

“Chris Harrison, a professor of computer science at Carnegie Mellon University’s Human-Computer Interaction Institute, has been working on a similar idea since 2009. “People want to do more sophisticated things on mobile phones. And the industrial answer seemed to be: Let’s put bigger and bigger screens on them,” he says. “That only works up to a point. Why don’t we just forget the screen entirely? Why not use the skin? Instead of the three-and-a-half-inch iPhone, why not have the 20-inch arm bone?” So Harrison created OmniTouch (also in collaboration with Microsoft), a device worn on the shoulder that would project your phone interface onto your palm. A depth-sensitive camera picked up when and where you tapped on your skin, so the projection reacted with it. “The invention of smartphones enabled the creation of all these ideas and apps and services. Imagine what that will be like for the body,” Harrison says.

A Few Good Privacy Questions

There are many intriguing stories about the potential dark side of implanting microchips. Wired magazine describes, Mind Games: The Tortured Lives of ‘Targeted Individuals.’ Here’s the final paragraph from that piece: “Once she loved technology, shaping and molding it, playing with data in the backend of a website. When the targeting first began, she even considered the ways the technology could do good: What if, for instance, the chip inside your head could teach you to speak a new language? But she quickly learned that it wasn’t there to teach her—it was there to hurt her. It was permanent, and it would change her forever. …”

In this Forbes article, the author describes how The Privacy Debate Isn’t About Secrets, It’s About Control. Quote: “Even if Internet search yielded an accurate, fair, crowd-vetted record of all human experience — which it doesn’t — those records no longer belong to individuals, but rather to the faceless mechanisms of social discourse and surveillance. Sure, the loss of privacy can be embarrassing or frustrating, but it’s a side effect of this thornier issue of giving up control.”

Most of the same questions that surround cybersecurity and privacy in other disciplines apply to this microchip implant topic, only the stakes can become even higher and more personal.

At first, a microchip implant may be pretty “dumb” on the scale of microchip advancements. Perhaps all the chip can do is open a door or verify your identity at work. But is this only step one down a scary yellow brick road?

Here are a few basic questions to consider about microchip implants:

  • What are the benefits of implanting the chip(s)?
  • Is implanting chips physically and emotionally safe?
  • Who owns the data on the chip?
  • Who has access to the data — and when?
  • Do the chips communicate, somehow, with outside networks?
  • How are chips updated when flaws are found?
  • Can the chips be hacked? Assuming yes, what security is in place to stop unauthorized access to data and manipulation of data.
  • Do religious beliefs forbid the practice?
  • Is implanting the microchip truly voluntary? Will it still be voluntary tomorrow or in 10 or 20 years?
  • Is the practice medically necessary?
  • Are incentives offered to those who participate?
  • Are penalties coming for those who don’t participate?
  • Will being chipped start as an exception and become the rule?
  • Will ethical and moral processes and procedures be breached by hackers? (No way to stop the bad actors once you begin.)
  • What laws are put in place on this implanted chip topic?
  • What company policies are affected?

On a wider scale, since the Internet is an accelerator for good and evil at the same time, what good or evil outcomes will come from this implanted chip trend?

Closing Thoughts

There is no doubt in my mind that we will keep coming back to this implanted chip topic over the next decade. More health advantages are coming, as well as technology breakthroughs that may even bring cures for some diseases by using chip implants as part of the answer.

If you are interested, I recommend reading these other articles listing more benefits and downsides of implanting microchips — and explaining why the trend is set to explode over the next decade.

But the questions will remain about whether these substantial implanted chip benefits are worth the privacy, security and other risks. Expect related chip implant questions (in various forms) to become a top technology, privacy and security concern in the 2020s — and will even become a hotly debated topic in 2019.  

I was amazed at the deep emotional feelings regarding this topic that recently came through online, and this passion has grown in the past 18 months. More than any other privacy or security issue I have seen recently, implanted chips are, and will be, a hot-button privacy topic that is not going away. In fact, I think it may become the No. 1 privacy topic in the next few years.    

Military leaders point out that capabilities take a long time to develop, but intentions can change overnight. In other words, the debate will not only center on current technology solutions, but also on what you believe might happen in the future regarding the use of implanted chips. For example: Will it truly stay voluntary?  

Finally, since perspectives on this topic do not cut across the typical left-right divide, your personal decision on receiving a chip implant may have more to do with your trust in your doctor, your employer, your government, the technology company providing the answers, or even your religious beliefs, than your political party affiliation or what a specific chip can currently do — or not do. 

Share your comments with the community by posting them below. Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing!

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

Pakistani-Canadian scientist experiments brain-chip implantation for brain ailments

Last Updated On 29 March,2019 10:43 pm
Source: Dunyan News

These chips help understand the interaction between human tissues and electronic devices, said Dr.
Source: Dunyan News
Shidonna Raven Garden and Cook

(Web Desk) – Dr. Naweed Syed who invented neuro/bionic chip is starting experiments on humans this year to cure the brain-related ailments like seziures and epilepsy according to online website.

Pakistani-Canadian scientist of the University of Calgary’s Hotchkiss Brain Institute has been working on these brain chips for quite few years now which gained a lot of attraction all over the world.

These chips help understand the interaction between human tissues and electronic devices.

Dr. Naweed Syed is testing these chips for the incurable brain ailments and function loss by implanting them inside the brain. It might hit the road to bionic robotics for future.

Dr. Naweed, the pioneer of brain cell activity reading chips, will undertake the experiments in the middle of this year. The hybrid, ultra-sensitive bionic chip will first serve as a diagnostic device for epileptic patients through numerous, unprecedented approaches.

The hybrid bionic chip is one of the three unique chips developed by Syed. It aims at detecting seizures in a way that’s never been done before.

Furthermore, after it’s implanted, the chip can not only detect seizures but also convey the signals wirelessly to a wearable pocket device. This can relieve the patients of a 30-foot cable, which is a part of the conventional procedure.

This chip is significant because it will be MR compatible and enable the surgeon to identify the location of the seizures, which is quite hard to achieve normally.

Although it took almost two decades of feverish experiments, deign, redesign, and observations, a two-way brain chip is finally ready for human trials.

Nevertheless, in the next step, the chip will not only detect seizures but also switch to a device that can subdue them. The human trials will begin in mid-2019 at the University of Calgary, Alberta, Canada.

When new technologies, inventions and even medications come on the market there is typically an altruistic look at what it can do. Little thought is given to the consequences and ramifications. Indeed in the midst of a pandemic some of the loudest voices of vaccine hesitation are coming from health care workers themselves. The say the vaccine was politicized, some say it was rushed and consequently the whole world is apart of testing a vaccine that has not undergone the typical 7 years required for a ‘sound’ clinical trail that evaluates the response of the body to the vaccine. What are the ethics involved in implanting humans with chips? Have we properly tested the risk and implications? What could be the consequences of not doing so? COVID 19 has brought clinical trails into warp speed literally in the midst of a history of pharmaceuticals consistently fined for not following clinical trial laws. How has COVID 19 changed the landscape of clinical trails. The United States has already surpassed the number of people who died in WWII in COVID deaths.

Share your comments with the community by posting them below. Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing!

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

Neuroreality: The New Reality is Coming. And It’s a Brain Computer Interface

In the future, brain chips will govern how we experience reality.

KRISTIN HOUSERJULY 26TH 2017
Source: Futurism

The Virtual World

With the release of the Oculus Rift in March 2016, the age of virtual reality (VR) truly began. VR tech had been generating buzz since the 1990s, but the Rift was the first high-end VR system to reach the consumer market, and early reviews confirmed that it delivered the kind of experience users had been hoping for.

Research into VR exploded in this new era, and experts soon started to find innovative ways to make virtual experiences more immersive…more real. To date, VR technologies have moved beyond just sight and sound. We’ve developed technologies that let users touch virtual objects, feel changes in wind and temperature, and even taste food in VR.

However, despite all this progress, no one would mistake a virtual environment for the real world. The technology simply isn’t advanced enough, and as long as we rely solely on traditional headsets and other wearables, it never will be.

Before we can create a world that is truly indistinguishable from the real one, we will need to leave the age of virtual reality behind and enter a new era — the era of neuroreality.

Reality 2.0

Neuroreality refers to a reality that is driven by technologies that interface directly with the human brain. While traditional VR depends on a user physically reacting to external stimuli (for example, swinging a controller to wield a virtual sword on a screen) a neuroreality system interfaces directly with the user’s biology through a brain-computer interface (BCI).

Notably, this technology isn’t some far-flung sci-fi vision. It’s very real.

To rehash the basics: BCIs are a means of connecting our brains to machines, and they can be either invasive (requiring an implant of some sort) or non-invasive (relying on electrodes or other external tech to detect and direct brain signals). Experts have predicted that advances in BCIs will lead to a new era in human evolution, as these devices have the potential to revolutionize how we treat diseaseslearncommunicate…in short, they are set to utterly transform how we see and interact with the world around us.

In fact, some companies are already innovating in the newly emerging field of neuroreality.

Founded by physicist Dan Cook in 2013, EyeMynd’s goal is to create a VR system that allows the user to navigate a virtual world simply by thought—no immersion-breaking controller required.

“When you’re in the virtual world—whether you’re playing a game or something else—you don’t want to have to keep thinking about what you’re doing with your hands,” Cook told Digital Trends in November. “It’s much better to have pure brainwave control. It will be a much more satisfying experience and will allow for a much greater level of immersion. You can forget about your live human body, and just focus on what’s going on in front of you.”

Cook likens the experience to dreaming. “In a dream, you can run around without moving your physical legs. That dreaming and imagining creates brain signals that we can read,” he told The Guardian. “With what we want to do, you won’t need eyeballs to see, or ears to hear, or hands and feet. We can bypass all of that.”

EyeMynd’s system is non-invasive, meaning it wouldn’t require the user to undergo any sort of device implantation. Instead, they would wear a headset that includes EEG sensors to track their brainwaves.

httpv://www.youtube.com/watch?v=embed/7bROnoryZ_k?feature=oembed

Cook’s isn’t the only company exploring the use of brainwave-detecting external tech to make the VR experience feel more seamless. Boston-based startup Neurable, bioinformatics company EMOTIV, and social networking giant Facebook are all working on non-invasive devices that would allow users to navigate the virtual world through thought alone.

However, as Joy Lyons, chief technology officer of audio tech startup OSSICtold Vice at the 2016 VRLA Summer Expo, the ideal hardware for creating a new reality isn’t an external headset, no matter how advanced. It’s “a chip in the brain.”

A World In Your Mind

Earlier this year, serial entrepreneur Elon Musk founded Neuralink, a company with the goal of developing cutting-edge technology that connects a person’s brain to the digital world through an array of implanted electrodes. Shortly before Musk’s announcement, Braintree founder Bryan Johnson announced a similar venture—that he is investing $100 million to unlock the power of the human brain and make our neural code programmable. Johnson’s company, Kernel, is working to create the world’s first neuroprosthesis

Musk himself has predicted that we’ll eventually be able to create computer simulations that are indistinguishable from reality, and if these brain interfaces come to fruition, they could act as the platform through which we experience those simulations, allowing us to not only see a realistic world but touch it and truly feel it.

In a detailed report announcing the launch of Neuralink, Tim Urban described the potential impact of this proposed tech on our understanding of reality. Instead of relying on external hardware like goggles, gloves, and headphones to trick our senses into believing that what we encounter in the virtual world is real, we could program realities that trigger the same parts of our brains that would be engaged if the experiences actually were real.

“There would be no more need for screens of course — because you could just make a virtual screen appear in your visual cortex. Or jump into a VR movie with all your senses,” asserted Urban. “You’ll be able to actually experience almost anything for free.”

The same part of your brain that is stimulated when you taste pizza could be triggered to engage when you bite into a slice in this new reality, and the same part that lets you smell the ocean air in reality could  be simulated and provide that feeling while standing on the shore of a virtual Atlantic ocean.

The difference between the real world and the virtual one would be undetectable. For all intents and purposes, a difference would not exist.

Figuring out the tech to actually make this happen won’t be easy, and overcoming the non-tech related obstacles will present an additional challenge (such as developing a comprehensive map of the human brain and all our neurons). Elective brain surgery is an extremely controversial subject, and past experiments haven’t yielded such promising results. Neuralink and like-minded companies will need to engage in years of research before their devices will be ready for human implantation, and even then, they’ll have regulatory hurdles to overcome.

Still, BCI research is progressing rapidly, so while a system of electrodes that can effectively project an entirely new world directly into our brains might seem like a sci-fi pipe dream, it really shouldn’t. After all, just two decades ago, the virtual reality experience delivered today by the Rift felt woefully out of reach, and now, anyone with $600 can bring it home with them (and the price is dropping at a remarkable rate).

As Cook told The Guardian, we aren’t as far as we may think from the day when navigating virtual worlds using just our thoughts is the norm: “Ten years from now, this will seem obvious.”

Disclosure: Bryan Johnson is an investor in Futurism; he does not hold a seat on our editorial board or have any editorial review privileges.

MindControl VR by ARworks at MWC, Barcelona 2017

Shidonna Raven Garden and Cook
Source: Futurism
Shidonna Raven Garden and Cook

What are the health implications for a human, Artificial Intelligence and computer integration? What are the privacy implications? What are the implications for humanity? Have there been clinical trails? How long were the clinical trails? Were any of the clinical trials companies fined and why? Are the inventors and those conducting clinical trails willing to lead by example?

Share your comments with the community by posting them below. Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing!

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

Elon Musk hopes to put a computer chip in your brain. Who wants one?

By Rachel Metz, CNN Business
Updated 11:36 AM EDT, Sun July 21, 2019
Source: CNN

CHICAGO, IL - JUNE 14: Engineer and tech entrepreneur Elon Musk of The Boring Company  listens as Chicago Mayor Rahm Emanuel talks about constructing a high speed transit tunnel at Block 37 during a news conference on June 14, 2018 in Chicago, Illinois. Musk said he could create a 16-passenger vehicle to operate on a high-speed rail system that could get travelers to and from downtown Chicago and O
Source: CNN
Shidonna Raven Garden and Cook

This week Elon Musk unveiled his most sci-fi project thus far: a computer chip connected to exceptionally slender wires with electrodes on them, all of which is meant to be embedded in a person’s brain by a surgical robot. The implant would connect wirelessly to a small behind-the-ear receiver that could communicate with a computer.

Musk hopes the implant, created by his brain-computer interface startup Neuralink, could one day help quadriplegics control smartphones, and perhaps even endow users with a sort of telepathy. Like existing brain-machine interfaces, it would collect electrical signals sent out by the brain and interpret them as actions.

Elon Musk, shown here in March 2019 before unveiling Tesla

Elon Musk, shown here in March 2019 before unveiling Tesla’s Model Y, is working on a chip he hopes will eventually be implanted in people’s brains. (AP Photo/Jae C. Hong, File)PHOTO: Jae C. Hong/AP

Neuralink, which was founded in 2016, has already tested an early, wired version of this implant in rats (and Musk indicated it has enabled a monkey to control a computer with his brain, too); Musk said human trials could start by the end of next year, though the company doesn’t yet have approval from the US Food and Drug Administration for such a study. (And, it should be noted, Musk, who is also CEO of Tesla and SpaceX, has a history of making outlandish technological claims: for instance, the he said in a recent interview that getting humans to Mars in 4 years “sounds doable.”)

Neuralink’s promise of a brain-connected device that looks as nondescript as a hearing aid — the kind of thing you could hide with hair or a hat — is exciting to scientists who have spent years working on this technology.

“The general idea and their motivation, I think, are spot on,” said Andrew Schwartz, a professor of neurobiology at the University of Pittsburgh and pioneer in the brain-machine interface field.

And, in fact, a number of experts told CNN Business that Neuralink could, in the coming years, be a boon for people with conditions such as quadriplegia, enabling increased independence and ushering potentially life-transforming technology out of the lab and into the real world.

But will it be, as Musk envisions, the kind of device that the average person will one day sign up for, too? Probably not, Schwartz and other experts who spoke with CNN Business agreed.

How a brain chip could help

The idea of a brain-machine interface is not new; scientists have been working on them for decades, and they have been implanted and tested in animals such as monkeys as well as in people. There are some FDA-approved deep-brain stimulation devices meant for, among other things, controlling tremors in people with Parkinson’s disease, and several tech companies have worked on their own methods for connecting the brain to computers: Facebook, for instance, has worked on a non-invasive device to let you send text messages by thinking.

Neuralink envisions a brain implant that can connect wirelessly with a small receiver that sits behind the ear.PHOTO: Neuralink

Yet these efforts tend to be confined to labs for a number of reasons: they’re expensive, bulky, require training (of both the user and the computer), and, when it comes to an under-the-skull implant, the person outfitted with it generally must be physically tethered to a computer for it to work.

Virginia de Sa, a professor studying brain-computer interfaces at the University of California San Diego, said several of Neuralink’s ideas sound “very promising,” such as the use of very fine wires to implant electrodes in the brain — the thinner they are, she said, the less damage they’ll do to the brain, and, hopefully, the longer they’ll last.

Schwartz sees the potential in Neuralink’s design, particularly its plans to miniaturize the components of the implant, make it wireless, and improve the electrode technology.

He believes the wireless aspect of it is key, noting that getting FDA approval for such an implant includes a risk assessment, and the riskiest part of today’s brain-computer interfaces involves a connector that comes through the patient’s skin to link the implant to a computer.

“By removing that whole thing, it becomes a much safer technology,” he said, as it reduces the risk of an infection in the patient.

Neuralink president Max Hodak said during the presentation that the company’s plan for its first product includes it being able to control mobile devices and a keyboard or mouse, though he noted that, as of now, “these are aspirations.”

It doesn’t sound outlandish, though. Schwartz has already worked with systems that can let paralyzed patients pick up objects with a robotic hand and even get some sensory feedback (Musk said Tuesday that Neuralink’s device would also be able to both read brain signals and send feedback). He can imagine that, some day in the future, a person with a severe impairment who is outfitted with a device such as the one Neuralink outlined could become much more autonomous.

A paralyzed person, for instance, would still be sitting in a wheelchair, he said, but perhaps they’d be able to drive it by thinking rather than using a joystick, and even control a prosthetic arm connected to the chair as well.

“They could potentially do their own laundry,” he said.

It’s still brain surgery

During his presentation, Musk said Neuralink aims to make the surgery for the company’s implant “equivalent to a LASIK type of thing where you sit down, a machine does its thing, and you can walk away within a few hours,” all without a hospital stay.

He spoke about the wires that would be implanted under a person’s skull as threads; a robot for implanting them would bypass blood vessels and cause “minimal trauma,” he claimed.

A Neuralink robot for placing slender electrodes inside the brain.PHOTO: Neuralink

It sounds simpler than the way people receive implants today. Essentially, as things work now, the skull is cut open, the brain is exposed, chips are installed, connectors are mounted to the skull, and the head is stitched up.

Yet the reality is that implanting a device underneath the skull will remain brain surgery. Neuralink acknowledges it will still need to bore a hole in your skull, for instance.

“It’s still surgery; it’s still risky,” de Sa said. “People can die in even the simplest surgeries.”

Beyond the risks of a medical procedure, there are security concerns, too. Nataliya Kosmina, a postdoctoral associate at the MIT Media Lab, said she “freaked out” when she saw the portion of the presentation in which Neuralink president Max Hodak mentioned that the implant is meant to be controlled with an iPhone app; she pointed out that someone hacking into such an app could be far more dangerous than if they were to, say, hack your bank account.

“As much time and effort as we’re all going to spend to make these kinds of devices and implants accessible and safe and put them out there, we would need to spend the same amount of time and energy on first, ethical issues, and second, privacy and security,” she said.

Who will want one?

For now, Neuralink said it is working on a brain chip to help with serious medical conditions, but Musk eventually wants it to appeal to all kinds of people. Several experts said they can’t envision most people clamoring for Neuralink’s brain chip, however.

“It’s really like a sort of a science-fiction vision that gets some people excited about it, but I don’t see the market for something like that,” said Andrew Hires, an assistant professor of neurobiology at USC. “The technological development would have to go so far beyond what would currently be capable with a device like this.”

Schwartz agreed, saying that while scientists can decode fairly complex brain signals related to, say, how we move our hands and fingers, they are just starting to understand things such as how to apply force to objects or manipulate them in the real world.

When it comes to more futuristic applications of the technology to things like thought transmission, memory enhancement or working with artificial intelligence, he said, “we’re nowhere close to understanding anything like that.”

Some states are already working against employers implanting chip in their employees. Chips are already on the market in some form. What do you know about human chip implants? What they can do? If they can be hacked? And the health and human implications?

Share your comments with the community by posting them below. Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing!

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

Elon Musk, One Step Closer to Connecting the Brain and Computer

Neuralink Progress Update, Summer 2020

Shidonna Raven Garden and Cook
Neuralink Progress
Source: Vox
Shidonna Raven Garden and Cook

This technology along with many others are possible today. Were you aware of that? What do you think of these capabilities? Would you do it to remain competitive with Ai technology to keep your job? Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing.

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

GMO OMG

GMO OMG - Official Trailer - (2014)

Shidonna Raven Garden and Cook
OMG GMO
Shidonna Raven Garden and Cook

Do you know what is in your food? What do you think the FDA’s role should be in disclosure about the food you eat? What else is in the food you eat? Can you pronounce everything in your food? Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing.

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.

Posted on Leave a comment

Food & Health

2015 Food and Health Survey Media Webcast

Shidonna Raven Garden and Cook
International Food Information Council Foundation Health Survey 2015
Shidonna Raven Garden and Cook

What did you learn from this Health Survey? What did you learn about your health and the food choices you make? How do the food choices you make impact your health? Do you think their is bias in the survey? Share the wealth of health with your friends and family by sharing this article with 3 people today. As always you are the best part of what we do. Keep sharing!

If these articles have been helpful to you and yours, give a donation to Shidonna Raven Garden and Cook Ezine today.